0=-16t^2+0(t)+64

Simple and best practice solution for 0=-16t^2+0(t)+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+0(t)+64 equation:



0=-16t^2+0(t)+64
We move all terms to the left:
0-(-16t^2+0(t)+64)=0
We add all the numbers together, and all the variables
-(-16t^2+0t+64)=0
We get rid of parentheses
16t^2-0t-64=0
We add all the numbers together, and all the variables
16t^2-1t-64=0
a = 16; b = -1; c = -64;
Δ = b2-4ac
Δ = -12-4·16·(-64)
Δ = 4097
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{4097}}{2*16}=\frac{1-\sqrt{4097}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{4097}}{2*16}=\frac{1+\sqrt{4097}}{32} $

See similar equations:

| n+16=43 | | 3x-4x-2=1 | | 8w=10w-8 | | 9x+7=-3x+-5 | | -3x-6=10 | | 10x+7=8(2x−4)−9 | | 5c+3=8c-6 | | 3/5c-2=1/2c+3 | | y/4+7=-3 | | 3.6h+4.8=9.3 | | d,d=3 | | 55+65+2x=180 | | 13-13u=-8 | | 11.304=3.14d | | 4n+2=38-2n | | 5n-20=-15n+20 | | -71x=35.5 | | 1/3*a-5/6=1/2 | | 3x+2.89=10 | | 5x+20+3x-50=360 | | 2x+10+45=180 | | 12x=12.6 | | -55=1/4x+73 | | 3x-10+45=180 | | x/4.8=33.6 | | a/3-5/6=1/2 | | 2(a-8)+7=5(a+2)-19 | | 3x²-6x-12=0 | | b=36 | | 45+3x-10+2x+10=180 | | x-9+x+x=-30 | | w-15.4=308 |

Equations solver categories